(400-4t^2)/10-t

Simple and best practice solution for (400-4t^2)/10-t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (400-4t^2)/10-t equation:


t in (-oo:+oo)

(400-(4*t^2))/10-t = 0

(400-4*t^2)/10-t = 0

(400-4*t^2)/10+(10*(-t))/10 = 0

10*(-t)-4*t^2+400 = 0

400-4*t^2-10*t = 0

400-4*t^2-10*t = 0

2*(200-2*t^2-5*t) = 0

200-2*t^2-5*t = 0

DELTA = (-5)^2-(-2*4*200)

DELTA = 1625

DELTA > 0

t = (1625^(1/2)+5)/(-2*2) or t = (5-1625^(1/2))/(-2*2)

t = (5*65^(1/2)+5)/(-4) or t = (5-5*65^(1/2))/(-4)

2*(t-((5*65^(1/2)+5)/(-4)))*(t-((5-5*65^(1/2))/(-4))) = 0

(2*(t-((5*65^(1/2)+5)/(-4)))*(t-((5-5*65^(1/2))/(-4))))/10 = 0

(2*(t-((5*65^(1/2)+5)/(-4)))*(t-((5-5*65^(1/2))/(-4))))/10 = 0 // * 10

2*(t-((5*65^(1/2)+5)/(-4)))*(t-((5-5*65^(1/2))/(-4))) = 0

( 2 )

2 = 0

t belongs to the empty set

( t-((5*65^(1/2)+5)/(-4)) )

t-((5*65^(1/2)+5)/(-4)) = 0 // + (5*65^(1/2)+5)/(-4)

t = (5*65^(1/2)+5)/(-4)

( t-((5-5*65^(1/2))/(-4)) )

t-((5-5*65^(1/2))/(-4)) = 0 // + (5-5*65^(1/2))/(-4)

t = (5-5*65^(1/2))/(-4)

t in { (5*65^(1/2)+5)/(-4), (5-5*65^(1/2))/(-4) }

See similar equations:

| 18x^2-4x=46 | | 1+6y=8+3y | | 8+2x-1=-2-5x | | (x/6)=(x-4)/2 | | x-6=x-4/2 | | 60P(30-1)= | | x/2-9=2 | | 3x+7=2x^2 | | p(90-60)= | | 15x^2-96x-192=0 | | 4(12/10)-5y=6 | | 5f^4-20f^3-60f^2=0 | | 4.5/X=9/10 | | 4/3x=75.5 | | 3/4x=75.5 | | 1234567=51 | | 90p-60p= | | 1/4x=75.5 | | v^2+12v+17=0 | | v^2+12+17=0 | | e^4-10e^2+9=0 | | n^2=30+n | | 4/1x=75.5 | | (2/3)(3) | | 2+5x-75=0 | | e^2-121=0 | | -1.75x+2=8-1.75x | | 9x+3=36 | | 2n^2+6-108=0 | | e^2+12e+36=0 | | Y=7/X^3 | | 3x-4(16/10)=5 |

Equations solver categories